US 2006/0123412 Al

[0051] The system verifier 164 performs one or more of
the following verifications:

[0052] that all dependencies of installed software in the
computer 102 are met

[0053] that an operating system of the computer 102
includes all device drivers necessary to run on the
hardware configuration of the computer 102;

0054] that code and configuration settings in the com-
2 2
puter 102 have not been altered either accidentally or
maliciously;

[0055] that an application is correctly installed in the
computer 102;

[0056] that a known faulty or malicious program is not
installed on the computer 102;

[0057] that an application and all of its constituent
components and dependencies exist on the computer
102 before installation;

[0058] that an application is installable on the computer
102 before loading its components onto a system;

[0059] that installation of a new application or system
component will not conflict with existing applications
or components;

[0060] that an application or operating system compo-
nent can be removed without breaking dependencies
from other applications or components;

[0061] that an application or operating system conforms
to a predefined local policy;

[0062] that the necessary pre-conditions for application
launch are met before the application is launched;

[0063] that applications for which pre-conditions are
not met are not allowed to execute;

[0064] that during execution, if necessary conditions for
execution are no longer valid, the application is no
longer allowed to execute.

[0065] As shown in FIG. 1, another computer 170 is
configured with its own memory 172 (e.g., volatile, non-
volatile, removable, non-removable, etc.). This memory has
a system inspector 180 therein.

[0066] As represented by the large-headed arrow, the
system inspector 180 receives, as input, the “system image”
of'the computer 102. In other words, it receives a copy of the
system-embodying contents and configuration of the com-
puter 102. It may be received directly from the computer 102
or indirectly as a separate copy of the “system image.”

[0067] The system inspector 180 performs an analysis of
the offline “system image” to verify conclusively that the
computer 102 contains specific functional components (such
as the OS or applications). More particularly, the inspector
examines the self-describing artifacts to see if all of the
necessary components (described as such and referenced by
manifests of the self-describing artifacts) are located and
properly identified. The inspector reports the results of this
examination.

[0068] The information contained in the manifest for an
artifact can be used by a compiler or other optimization tool
to facilitate the optimization of the code in the artifact, at

Jun. &, 2006

install time, program load time, or another time of a user’s
choosing, by describing all of the libraries, components, and
dependencies of the artifact. This description permits the
compiler or tool to make more precise assumptions about the
environment in which the artifact executes and the code
within the artifact.

[0069] The information contained in the manifest for an
artifact can be used by an error detection tool to facilitate
ensuring the correctness of the code in the artifact, at install
time, program load time, or another time of a user’s choos-
ing, by describing all of the libraries, components, and
dependencies of the artifact. This description permits the
tool to make more precise assumptions about the environ-
ment in which the artifact executes and the code within the
artifact.

Manifest

[0070] A manifest contains metadata that describes arti-
facts of the computer 102. The metadata also describes
configuration information related to the artifacts including
external dependencies and external interfaces. The manifests
also describe the connectivity relationships between soft-
ware components.

[0071] For example, the manifest for an application called
“ProgramA”, as delivered by its publisher, includes a list of
the binary load modules (EXEs, DLLs, etc.), certificates
attesting to the authenticity of the components and provider,
a list of the names of configuration settings and their default
values, a list of external binary load modules required by the
program’s load modules, a list of external settings and
names accessed by the program, and a list of names and
settings exposed by ProgramA, such as the information
required to tell the operating system that ProgramA wants to
be the default editor for files with the “.ZZZ” extension.

[0072] 1In at least one embodiment, the manifests of self-
describing artifacts contain declarative descriptions that
provide sufficient information to enable the following:

[0073] program-installation software to install or unin-
stall its program components without executing any
ad-hoc code contained within the program;

[0074] the person or agent installing a program to bind
its program components

[0075] the person or agent installing a program to
override any configurable default settings;

[0076] the person or agent installing a program to make
it part of the manifest for the system as a whole;

[0077] inspector software (e.g., system inspector 180)
to verify that a particular program has been correctly
installed or uninstalled, both in its own context and in
the context of the system as a whole;

[0078] wverification software (e.g., system verifier 164)
to determine if a particular program is presently run-
nable;

[0079] pre-installation software to determine if all
dependencies are met on a system necessary to enable
a particular program to be installed and run;

[0080] the person or agent installing a particular pro-
gram to determine other aspects of the future behavior
of the program or of the system as a whole;



